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CHAPTER

ONE

INTRODUCTION

The RT1 package implements a bistatic first order scattering radiative transfer model that might be used for generic
purposes. Unique features of this model are

• analytical solution of the radiative transfer equation up to first order with flexible BRDF and volume phase
function specifications.

• extensive nonlinear least-squares fit module for parameter estimation

• thoroughly tested model code

1.1 Credits and References

RT1 is provided as open-source software, hoping that it will help you in your research.Please read the LICENSE agree-
ment related to this software which gives you much flexibility to (re)use the code. Currently we use the APACHE-2.0
license.

The developers would very much appreciate to receive feedback how the model is used. Also contributions and sug-
gestions for further improvements are highly welcome.

When you are using RT1 as part of your publications, please give the developers credit by giving reference to the GitHub
repository and to the following papers:

• R.Quast and W.Wagner, Analytical solution for first-order scattering in bistatic radiative transfer interaction
problems of layered media, Appl.Opt.55, 5379-5386 (2016)

• R.Quast, C.Albergel, J.C.Calvet, W.Wagner, A Generic First-Order Radiative Transfer Modelling Approach for
the Inversion of Soil and Vegetation Parameters from Scatterometer Observations, doi:10.3390/rs11030285
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CHAPTER

TWO

INSTALLATION

There are currently different methods to install rt1:

2.1 Using conda

TBD conda installation is currently under development . . . be patient!

The installation using conda is as easy as:

conda install [-n YOURENV] -c conda-forge rt1

2.2 Using pip

The rt1 package is provided on pip. Install is as easy as:

pip install rt1

2.3 The standard python way

You can also download the source code package from the project website or from pip. Unpack the file you obtained
into some directory (it can be a temporary directory) and then run:

python setup.py install

If might be that you might need administrator rights for this step, as the program tries to install into system library
pathes. To install into a user specific directory please refer to the pip documentation.

5
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https://github.com/TUW-GEO/rt1/branches
https://pypi.python.org/pypi/rt1
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CHAPTER

THREE

THEORY

The RT1 module provides a method for calculating the scattered radiation from a uniformly illuminated rough surface
covered by a homogeneous layer of tenuous media. The following sections are intended to give a general overview of
the underlying theory of the RT1 module. A more general discussion on the derivation of the used results can be found
in [QuWa16]. Details on how to define the scattering properties of the covering layer and the ground surface within
the RT1-module are given in Model Specification.

The utilized theoretical framework is based on applying the Radiative Transfer Equation (RTE) (3.1) to the geometry
shown in Fig. 3.1.

cos(𝜃)
𝜕𝐼𝑓 (𝑟, 𝜃, 𝜑)

𝜕𝑟
= −𝜅𝑒𝑥𝐼𝑓 (𝑟, 𝜃, 𝜑) + 𝜅𝑠

2𝜋∫︁
0

𝜋/2∫︁
0

𝐼𝑓 (𝑟, 𝜃′, 𝜑′)𝑝(𝜃, 𝜑, 𝜃′, 𝜑′) sin(𝜃′)𝑑𝜃′𝑑𝜑′ (3.1)

The individual variables are hereby defined as follows:

• 𝜃 denotes the polar angle in a spherical coordinate system

• 𝜑 denotes the azimuth angle in a spherical coordinate system

• 𝑟 denotes the distance within the covering layer

• 𝐼𝑓 (𝑟, 𝜃, 𝜑) denotes the specific intensity at a distance 𝑟 within the covering layer propagating in direction (𝜃, 𝜑).

• 𝜅𝑒𝑥 denotes the extinction-coefficient (i.e. extinction cross section per unit volume)

• 𝑝(𝜃, 𝜑, 𝜃′, 𝜑′) denotes the scattering phase-function of the constituents of the covering layer

Note: To remain consistent with [QuWa16], the arguments of the functions 𝑝(𝜃, 𝜑, 𝜃′, 𝜑′) and 𝐵𝑅𝐷𝐹 (𝜃, 𝜑, 𝜃′, 𝜑′) are
defined as angles with respect to a spherical coordinate system in the following discussion. Within the RT1-module
however, the functions are defined with respect to the associated zenith-angles!

A relationship between the module-functions and the functions within the subsequent discussion is therefore given by:

SRF.brdf(t_0,t_ex,p_0,p_ex) =̂ 𝐵𝑅𝐷𝐹 (𝜋 − 𝜃0, 𝜑0, 𝜃𝑒𝑥, 𝜑𝑒𝑥) and V.p(t_0,t_ex,p_0,p_ex) =̂ 𝑝(𝜋 −
𝜃0, 𝜑0, 𝜃𝑒𝑥, 𝜑𝑒𝑥)

7
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3.1 Problem Geometry and Boundary Conditions

Fig. 3.1: Illustration of the chosen geometry within the RT1-module (adapted from [QuWa16])

As shown in Fig. 3.1, the considered problem geometry is defined as a rough surface covered by a homogeneous layer
of a scattering and absorbing medium.

In order to be able to solve the RTE (3.1), the boundary-conditions are specified as follows:

• The top of the covering layer is uniformly illuminated at a single incidence-direction:

𝐼0(𝑧 = 0, 𝜃, 𝜑) =
𝐼0

sin(𝜃)
𝛿(𝜃 − 𝜃𝑖)𝛿(𝜑− 𝜑𝑖) (3.2)

• Radiation impinging at the ground surface is reflected upwards according to its associated Bidirectional Re-
flectance Distribution Function (BRDF)

𝐼+(𝑧 = −𝑑, 𝜃, 𝜑) =

∫︁ 2𝜋

0

∫︁ 𝜋

0

𝐼−(𝑧 = −𝑑, 𝜃, 𝜑)𝐵𝑅𝐷𝐹 (𝜃, 𝜑, 𝜃′, 𝜑′) sin(𝜃′)𝑑𝜃′𝑑𝜑′ (3.3)

The superscripts 𝐼± hereby indicate a separation between upwelling (+) and downwelling (−) intensity.

The additional specifications of the covering layer and the ground surface are summarized as follows:

3.1.1 Parameters used to describe the scattering properties of the covering layer

Scattering Phase Function: (i.e. normalized differential scattering cross section)

𝑝(𝜃, 𝜑, 𝜃′, 𝜑′) with
2𝜋∫︁
0

𝜋∫︁
0

𝑝(𝜃, 𝜑, 𝜃′, 𝜑′) sin(𝜃′)𝑑𝜃′𝑑𝜑′ = 1 (3.4)

Optical Depth:

𝜏 = 𝜅𝑒𝑥 𝑑 = (𝜅𝑠 + 𝜅𝑎) 𝑑 (3.5)

where 𝜅𝑒𝑥 is the extinction coefficient (i.e. extinction cross section per unit volume) , 𝜅𝑠 is the scattering coefficient
(i.e. scattering cross section per unit volume) , 𝜅𝑎 is the absorption coefficient (i.e. absorption cross section per unit
volume) and 𝑑 is the total height of the covering layer.

Single Scattering Albedo:

𝜔 =
𝜅𝑠

𝜅𝑒𝑥
=

𝜅𝑠

𝜅𝑠 + 𝜅𝑎
≤ 1 (3.6)

8 Chapter 3. Theory
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3.1.2 Parameters used to describe the scattering properties of the ground surface

Bidirectional Reflectance Distribution Function:

𝐵𝑅𝐷𝐹 (𝜃, 𝜑, 𝜃′, 𝜑′) with
2𝜋∫︁
0

𝜋/2∫︁
0

𝐵𝑅𝐷𝐹 (𝜃, 𝜑, 𝜃′, 𝜑′) cos(𝜃′) sin(𝜃′)𝑑𝜃′𝑑𝜑′ = 𝑅(𝜃, 𝜑) ≤ 1 (3.7)

where 𝑅(𝜃, 𝜑) denotes the Directional-Hemispherical Reflectance of the ground surface.

TBD: perhaps describe also normalization conditions for p and BRDF

3.2 First-order solution to the RTE

Incorporating the above specifications, a solution to the RTE is obtained by assuming that the scattering coefficient 𝜅𝑠

of the covering layer is small (i.e. 𝜅𝑠 ≪ 1). Using this assumption, the RTE is expanded into a series with respect to
powers of 𝜅𝑠, given by:

𝐼+ = 𝐼surface + 𝐼volume + 𝐼interaction + (𝐼𝑠𝑣𝑠) + 𝒪(𝜅2
𝑠) (3.8)

where the individual terms (representing the contributions to the scattered intensity at the top of the covering layer) can
be interpreted as follows:

• 𝐼surface: radiation scattered once by the ground surface

• 𝐼volume: radiation scattered once within the covering layer

• 𝐼interaction: radiation scattered once by the ground surface and once within the covering layer

• 𝐼𝑠𝑣𝑠: radiation scattered twice by the ground surface and once within the covering layer
(This contribution is assumed to be negligible due to the occurrence of second order surface-scattering)

After some algebraic manipulations the individual contributions are found to be given by (details can be found in
[QuWa16]):

𝐼surface(𝜃0, 𝜑0, 𝜃𝑒𝑥, 𝜑𝑒𝑥) = 𝐼0𝑒
− 𝜏

cos(𝜃0) 𝑒−
𝜏

cos(𝜃𝑒𝑥) cos(𝜃0)𝐵𝑅𝐷𝐹 (𝜋 − 𝜃0, 𝜑0, 𝜃𝑒𝑥, 𝜑𝑒𝑥) (3.9)

𝐼volume(𝜃0, 𝜑0, 𝜃𝑒𝑥, 𝜑𝑒𝑥) = 𝐼0 𝜔
cos(𝜃0)

cos(𝜃0) + cos(𝜃𝑒𝑥)

(︁
1 − 𝑒

− 𝜏
cos(𝜃0) 𝑒−

𝜏
cos(𝜃𝑒𝑥)

)︁
𝑝(𝜋 − 𝜃0, 𝜑0, 𝜃𝑒𝑥, 𝜑𝑒𝑥) (3.10)

𝐼interaction(𝜃0, 𝜑0, 𝜃𝑒𝑥, 𝜑𝑒𝑥) = 𝐼0 cos(𝜃0) 𝜔
{︁
𝑒−

𝜏
cos(𝜃𝑒𝑥)𝐹𝑖𝑛𝑡(𝜃0, 𝜃𝑒𝑥) + 𝑒−

𝜏
cos(𝜃𝑒𝑥)𝐹𝑖𝑛𝑡(𝜃𝑒𝑥, 𝜃0)

}︁
(3.11)

with 𝐹𝑖𝑛𝑡(𝜃0, 𝜑0, 𝜃𝑒𝑥, 𝜑𝑒𝑥) =

2𝜋∫︁
0

𝜋∫︁
0

cos(𝜃)

cos(𝜃0) − cos(𝜃)

(︁
𝑒
− 𝜏

cos(𝜃0) − 𝑒−
𝜏

cos(𝜃)

)︁
𝑝(𝜃0, 𝜑0, 𝜃, 𝜑)𝐵𝑅𝐷𝐹 (𝜋 − 𝜃, 𝜑, 𝜃𝑒𝑥, 𝜑𝑒𝑥) sin(𝜃)𝑑𝜃𝑑𝜑

(3.12)

3.3 Evaluation of the interaction-contribution

In order to analytically evaluate the remaining integral appearing in the interaction-term, the BRDF and the scattering
phase-function of the covering layer are approximated via a Legendre-series in a (possibly generalized) scattering angle
of the form:

𝐵𝑅𝐷𝐹 (𝜃, 𝜑, 𝜃𝑠, 𝜑𝑠) =

𝑁𝑏∑︁
𝑛=0

𝑏𝑛𝑃𝑛(cos(Θ𝑎𝑏
)) (3.13)

3.2. First-order solution to the RTE 9
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𝑝(𝜃, 𝜑, 𝜃𝑠, 𝜑𝑠) =

𝑁𝑝∑︁
𝑛=0

𝑝𝑛𝑃𝑛(cos(Θ𝑎𝑝)) (3.14)

where 𝑃𝑛(𝑥) denotes the nth Legendre-polynomial and the generalized scattering angle Θ𝑎 is defined via:

cos(Θ𝑎) = 𝑎0 cos(𝜃) cos(𝜃𝑠) + sin(𝜃) sin(𝜃𝑠) [𝑎1 cos(𝜑) cos(𝜑𝑠) + 𝑎2 sin(𝜑) sin(𝜑𝑠)] (3.15)

where 𝜃, 𝜑 are the polar- and azimuth-angles of the incident radiation, 𝜃𝑠, 𝜑𝑠 are the polar- and azimuth-angles of the
scattered radiation and 𝑎1, 𝑎2 and 𝑎3 are constants that allow consideration of off-specular and anisotropic effects within
the approximations.

Once the 𝑏𝑛 and 𝑝𝑛 coefficients are known, the method developed in [QuWa16] is used to analytically solve 𝐼interaction.

This is done in two steps:

First, the so-called fn-coefficients are evaluated which are defined via:∫︁ 2𝜋

0

𝑝(𝜃0, 𝜑0, 𝜃, 𝜑)𝐵𝑅𝐷𝐹 (𝜋 − 𝜃, 𝜑, 𝜃𝑒𝑥, 𝜑𝑒𝑥)𝑑𝜑 =

𝑁𝑏+𝑁𝑝∑︁
𝑛=0

𝑓𝑛(𝜃0, 𝜑0, 𝜃𝑒𝑥, 𝜑𝑒𝑥) cos(𝜃)𝑛 (3.16)

Second, 𝐼interaction is evaluated using the analytic solution to the remaining 𝜃-integral for a given set of fn-coefficients
as presented in [QuWa16].

Example

In the following, a simple example on how to evaluate the fn-coefficients is given. The ground is
hereby defined as a Lambertian-surface and the covering layer is assumed to consist of Rayleigh-
particles. Thus, we have: (𝑅0 hereby denotes the diffuse albedo of the surface)

• 𝐵𝑅𝐷𝐹 (𝜃, 𝜑, 𝜃𝑒𝑥, 𝜑𝑒𝑥) = 𝑅0

𝜋

• 𝑝(𝜃, 𝜑, 𝜃𝑒𝑥, 𝜑𝑒𝑥) = 3
16𝜋 (1 + cos(Θ)2) with cos(Θ) = cos(𝜃) cos(𝜃𝑒𝑥) +

sin(𝜃) sin(𝜃𝑒𝑥) cos(𝜑− 𝜑𝑒𝑥)

𝐼𝑁𝑇 =

∫︁ 2𝜋

0

𝑝(𝜃0, 𝜑0, 𝜃, 𝜑) *𝐵𝑅𝐷𝐹 (𝜋 − 𝜃, 𝜑, 𝜃𝑒𝑥, 𝜑𝑒𝑥)𝑑𝜑

=
3𝑅0

16𝜋2

2𝜋∫︁
0

(1 + [cos(𝜃0) cos(𝜃) + sin(𝜃0) sin(𝜃) cos(𝜑0 − 𝜑)]2)𝑑𝜑

=
3𝑅0

16𝜋2

2𝜋∫︁
0

(1 + 𝜇2
0𝜇

2 + 2𝜇0𝜇 sin(𝜃0) sin(𝜃) cos(𝜑0 − 𝜑) + (1 − 𝜇0)2(1 − 𝜇)2 cos(𝜑0 − 𝜑)2𝑑𝜑

(3.17)
where the shorthand-notation 𝜇𝑥 = cos(𝜃𝑥) has been introduced.

The above integral can now easily be solved by noticing:
2𝜋∫︁
0

cos(𝜑0 − 𝜑)𝑛𝑑𝜑 =

⎧⎨⎩2𝜋 for 𝑛 = 0
0 for 𝑛 = 1
𝜋 for 𝑛 = 2

(3.18)

Using some algebraic manipulations we therefore find:

𝐼𝑁𝑇 =
3𝑅0

16𝜋

[︁
(3 − 𝜇2

0) + (3𝜇0 − 1)𝜇2
]︁

=

2∑︁
𝑛=0

𝑓𝑛 𝜇𝑛

⇒ 𝑓0 =
3𝑅0

16𝜋
(3 − 𝜇2

0) 𝑓1 = 0 𝑓2 =
3𝑅0

16𝜋
(3𝜇0 − 1) 𝑓𝑛 = 0 ∀ 𝑛 > 2

(3.19)

10 Chapter 3. Theory
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An IPython-notebook that uses the RT1-module to evaluate the above fn-coefficients can be found HERE

References

3.3. Evaluation of the interaction-contribution 11
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CHAPTER

FOUR

MODEL SPECIFICATION

4.1 Evaluation Geometries

From the general definition of the fn-coefficients (3.16) it is apparent that they are in principle dependent on 𝜃0, 𝜑0, 𝜃𝑒𝑥
and 𝜑𝑒𝑥. If the series-expansions ((3.13) and (3.14)) contain a high number of Legendre-polynomials, the resulting
fn-coefficients turn out to be rather lengthy and moreover their evaluation might consume a lot of time. Since usually
one is only interested in an evaluation with respect to a specific (a-priori known) geometry of the measurement-setup,
the rt1-module incorporates a parameter that allows specifying the geometry at which the results are being evaluated.
This generally results in a considerable speedup for the fn-coefficient generation.

The measurement-geometry is defined by the value of the geometry-parameter of the RT1-class object:

R = RT1(... , geometry = '????')

The geometry-parameter must be a 4-character string that can take one of the following possibilities:

• 'mono' for Monostatic Evaluation

• any combination of 'f' and 'v' for Bistatic Evaluation

To clarify the definitions, the used angles are illustrated in Fig. 4.1.

Fig. 4.1: Illustration of the used incidence- and exit-angles

4.1.1 Monostatic Evaluation

Monostatic evaluation refers to measurements where both the transmitter and the receiver are at the same location.

In terms of spherical-coordinate description, this is equal to (see Fig. 4.1):

𝜃𝑒𝑥 = 𝜃0

𝜑𝑒𝑥 = 𝜑0 + 𝜋
(4.1)

Since a monostatic setup drastically simplifies the evaluation of the fn-coefficients, setting the module exclusively to
monostatic evaluation results in a considerable speedup.

The module is set to be evaluated at monostatic geometry by setting:

13
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R = RT1(... , geometry = 'mono')

Note:

• If geometry is set to 'mono', the values of t_ex and p_ex have no effect on the calculated results since they
are automatically set to t_ex = t_0 and p_ex = p_0 + Pi

• For azimuthally symmetric phase-functions1, the value of p_0 has no effect on the calculated result and the best
performance will be achieved by setting p_0 = 0.

4.1.2 Bistatic Evaluation

Any possible bistatic measurement geometry can be chosen by manually selecting the angles that shall be treated
symbolically (i.e. variable), and those that are treated as numerical constants (i.e. fixed).

The individual characters of the geometry-string hereby represent the properties of the incidence- and exit angles (see
Fig. 4.1) in the order of appearance within the RT1-class element, i.e.:

geometry[0] ... t_0
geometry[1] ... t_ex
geometry[2] ... p_0
geometry[3] ... p_ex

• The character 'f' indicates a fixed angle

– The given numerical value of the angle will be used rather than it’s symbolic representation to speed
up evaluation.

– The resulting fn-coefficients are only valid for the chosen specific value of the angle.

• The character 'v' indicates a variable angle

– The angle will be treated symbolically when evaluating the fn-coefficients in order to provide an ana-
lytic representation of the interaction-term where the considered angle is treated as a variable.

– The resulting fn-coefficients can be used for any value of the angle.

As an example, the choice geometry = 'fvfv' represents a measurement setup where the surface is illuminated at
constant (polar- and azimuth) incidence-angles and the location of the receiver is variable both in azimuth- and polar
direction.

Note:

• Whenever a single angle is set fixed, the calculated fn-coefficients are only valid for this specific choice!

• If the chosen scattering-distributions reqire an approximation with a high degree of Legendre-polynomials, eval-
uating the interaction-contribution with geometry = 'vvvv' might take considerable time since the resulting
fn-coefficients are very long symbolic expressions.

1 This referrs to any phase-function whose generalized scattering angle parameters satisfy a[0] = ?, a[1] == a[2] = ?. The reason for this
simplification stems from the fact that the azimuthal dependency of a generalized scattering angle with a[1] == a[2] can be expressed in terms
of cos(𝜑0 − 𝜑𝑒𝑥)𝑛. For the monostatic geometry this reduces to cos(𝜋)𝑛 = 1 independent of the choice of 𝜑0.
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4.2 Linear combination of scattering distributions

Aside of directly specifying the scattering distributions by choosing one of the implemented functions, the RT1-module
has a method to define linear-combinations of scattering distributions to allow consideration of more complex scattering
characteristics.

An IPython-notebook that shows the basic usage of linear-combinations within the RT1-module is provided
HERE .

4.2.1 Combination of volume-scattering phase-functions

Linear-combination of volume-scattering phase-functions is used to generate a combined volume-class element of the
form:

𝑝𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝜃0, 𝜑0, 𝜃𝑒𝑥, 𝜑𝑒𝑥) =

𝑁∑︁
𝑛=0

𝑤𝑛 * 𝑝𝑛(cos(Θ𝑎𝑛
)) =

𝑁∑︁
𝑛=0

𝑤𝑛 *
𝐾𝑛∑︁
𝑘=0

𝑃𝑘(cos(Θ𝑎𝑛
)) * 𝑝(𝑛)𝑘 (4.2)

where 𝑝𝑛(cos(Θ𝑎𝑛
)) denotes the scattering phase-functions to be combined, cos(Θ𝑎𝑛

) denotes the individual scattering
angles (3.15) used to define the scattering phase-functions 𝑤𝑛 denotes the associated weighting-factors, 𝑝(𝑛)𝑘 denotes
the kth Legendre-expansion-coefficient (3.14) of the nth phase-function and𝑃𝑘(𝑥) denotes the kth Legendre-polynomial.

Note: Since a volume-scattering phase-function must obey the normalization condition:∫︁ 2𝜋

0

∫︁ 𝜋

0

𝑝(𝜃, 𝜑, 𝜃′, 𝜑′) sin(𝜃′)𝑑𝜃′𝑑𝜑′ = 1 (4.3)

and each individual phase-function that is combined already satisfies this condition, the weighting-factors 𝑤𝑛 must
equate to 1, i.e.:

𝑁∑︁
𝑛=0

𝑤𝑛 = 1 (4.4)

Within the RT1-module, linear-combination of volume-scattering phase-functions is performed by the
LinCombV(omega, tau, Vchoices) function:

from rt1.volume import LinCombV

In order to generate a combined phase-function, one must provide the optical depth tau, the single-scattering albedo
omega and a list of volume-class elements along with a set of weighting-factors (Vchoices) of the form:

Vchoices = [ [weighting-factor , function] , [weighting-factor , function] , ... ]

Once the functions and weighting-factors have been defined, the combined phase-function is generated via:

V = LinCombV(tau, omega, Vchoices)

The resulting volume-class element can now be used completely similar to the pre-defined scattering phase-functions.

Note: Since one can combine functions with different choices for the generalized scattering angle (i.e. the a-
parameter), and different numbers of expansion-coefficients (the ncoefs-parameter) LinCombV() will automatically
combine the associated Legendre-expansions based on the choices for a and ncoefs.

4.2. Linear combination of scattering distributions 15
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The parameters V.a, V.scat_angle() and V.ncoefs of the resulting volume-class element are therefore NOT rep-
resentative for the generated combined phase-function!

4.2.2 Combination of BRDF’s

Linear-combination of BRDF’s is used to generate a combined surface-class element of the form:

𝐵𝑅𝐷𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝜃0, 𝜑0, 𝜃𝑒𝑥, 𝜑𝑒𝑥) =

𝑁∑︁
𝑛=0

𝑤𝑛 *𝐵𝑅𝐷𝐹𝑛(cos(Θ𝑎𝑛)) =

𝑁∑︁
𝑛=0

𝑤𝑛 *
𝐾𝑛∑︁
𝑘=0

𝑃𝑘(cos(Θ𝑎𝑛)) * 𝑏(𝑛)𝑘 (4.5)

where 𝐵𝑅𝐷𝐹𝑛(cos(Θ𝑎𝑛)) denotes the BRDF’s to be combined, cos(Θ𝑎𝑛) denotes the individual scattering angles
(3.15) used to define the BRDF’s𝑤𝑛 denotes the associated weighting-factors, 𝑏(𝑛)𝑘 denotes the kth Legendre-expansion-
coefficient (3.13) of the nth BRDF and 𝑃𝑘(𝑥) denotes the kth Legendre-polynomial.

Note: Since a BRDF must obey the following normalization condition:∫︁ 2𝜋

0

∫︁ 𝜋/2

0

𝐵𝑅𝐷𝐹 (𝜃, 𝜑, 𝜃′, 𝜑′) cos(𝜃′) sin(𝜃′)𝑑𝜃′𝑑𝜑′ = 𝑅(𝜃0, 𝜑0) ≤ 1 (4.6)

there is in principle no restriction on the weighting-factors for combination of BRDF’s!

It is however important to notice that the associated hemispherical reflectance 𝑅(𝜃0, 𝜑0) must always be lower or
equal to 1. In order to provide a simple tool that allows validating the above condition, the function RT1.Plots().
hemreflect() numerically evaluates the hemispherical reflectance using a simple Simpson-rule integration-scheme
and generates a plot that displays 𝑅(𝜃0, 𝜑0).

Within the RT1-module, linear-combination of BRDF’s is performed by the LinCombSRF(omega, tau,
SRFchoices) function:

from rt1.surface import LinCombSRF

In order to generate a combined phase-function, one must provide a list of surface-class elements along with a set of
weighting-factors (SRFchoices) of the form:

SRFchoices = [ [weighting-factor , function] , [weighting-factor , function] , ... ]

Once the functions and weighting-factors have been defined, the combined BRDF is generated via:

SRF = LinCombSRF(SRFchoices)

The resulting surface-class element can now be used completely similar to the pre-defined BRDF’s.

Note: Since one can combine functions with different choices for the generalized scattering angle (i.e. the a-
parameter), and different numbers of expansion-coefficients (the ncoefs-parameter) LinCombSRF()will automatically
combine the associated Legendre-expansions based on the choices for a and ncoefs.

The parameters SRF.a, SRF.scat_angle() and SRF.ncoefs of the resulting surface-class element are therefore
NOT representative for the generated combined BRDF!

16 Chapter 4. Model Specification
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4.3 Current limitations

• The list of pre-defined BRDF’s and volume-scattering phase-functions currently contains only few example of
possible choices and is intended to be extended. For example the possibility of using delta-peaked scattering-
distributions is contemplated for future versions of the code.

• If the expansion-coefficients of the BRDF and volume-scattering phase-function exceed a certain number (ap-
prox. ncoefs > 20) one might run into numerical precision errors.

4.3. Current limitations 17
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CHAPTER

FIVE

EXAMPLES

In the following, we provide reference to a couple of examples that reproduce the figures in the manuscript of Quast &
Wagner (2016).

A script that produces all examples is provided in the doc/examples directory. The following links provide however
links to IPython notebooks in the hope that this will facilitate the user to better understand the general concepts of the
code.

• Example 1 from Quast and Wagner (2016)

• Example 2 from Quast and Wagner (2016)

• Example 3: usage of a linear combination for the phase function and BRDF

• Example 4: basic fitting example

19
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CHAPTER

SIX

TECHNICAL DOCUMENTATION

6.1 RT1-module

Core module for implementation of 1st order scattering model using arbitrary BRDF and phase functions

References

Quast & Wagner (2016): doi:10.1364/AO.55.005379

class rt1.rt1.RT1(I0, t_0, t_ex, p_0, p_ex, V=None, SRF=None, fn_input=None, _fnevals_input=None,
geometry='mono', bsf=0.0, param_dict={}, lambda_backend='symengine', int_Q=True,
verbosity=1)

Bases: object

Main class to perform RT-simulations

Parameters

• I0 (scalar(float)) – incidence intensity

• t_0 (array_like(float)) – array of incident zenith-angles in radians

• p_0 (array_like(float)) – array of incident azimuth-angles in radians

• t_ex (array_like(float)) – array of exit zenith-angles in radians (if geometry is ‘mono’,
theta_ex is automatically set to t_0)

• p_ex (array_like(float)) – array of exit azimuth-angles in radians (if geometry is
‘mono’, phi_ex is automatically set to p_0 + np.pi)

• V (rt1.volume) – random object from rt1.volume class

• SRF (surface) – random object from rt1.surface class

• fn_input (array_like(sympy expression), optional (default = None)) – op-
tional input of pre-calculated array of sympy-expressions to speedup calculations where the
same fn-coefficients can be used. if None, the coefficients will be calculated automatically
at the initialization of the RT1-object

• _fnevals_input (callable, optional (default = None)) – optional input of pre-
compiled function to numerically evaluate the fn_coefficients. if None, the function will be
compiled using the fn-coefficients provided. Note that once the _fnevals function is provided,
the fn-coefficients are no longer needed and have no effect on the calculated results!

• geometry (str (default = 'vvvv')) – 4 character string specifying which components
of the angles should be fixed or variable. This is done to significantly speed up the evaluation-
process of the fn-coefficient generation

21
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The 4 characters represent in order the properties of:
t_0, t_ex, p_0, p_ex

– ’f’ indicates that the angle is treated ‘fixed’ (i.e. as a numerical constant)

– ’v’ indicates that the angle is treated ‘variable’ (i.e. as a sympy-variable)

– Passing geometry = ‘mono’ indicates a monstatic geometry (i.e.: t_ex = t_0, p_ex = p_0
+ pi) If monostatic geometry is used, the input-values of t_ex and p_ex have no effect on
the calculations!

For detailed information on the specification of the geometry-parameter, please have a look
at the “Evaluation Geometries” section of the documentation: (http://rt1.readthedocs.io/en/
latest/model_specification.html#evaluation-geometries)

• bsf (float (default = 0.)) – fraction of bare-soil contribution (no attenuation due to
vegetation)

• param_dict (dict (default = {})) – a dictionary to assign numerical values to
sympy.Symbols appearing in the definitions of V and SRF.

• lambda_backend (str (default = 'symengine' if possible, else 'sympy')) –
indicator to select the module that shall be used to compile a function for numerical evalua-
tion of the fn-coefficients.

possible values are:

– ’sympy’ : sympy.lambdify is used to compile the _fnevals function

– ’symengine’ : symengine.LambdifyCSE is used to compile the _fnevals function. This
results in considerable speedup for long fn-coefficients

• int_Q (bool (default = True)) – indicator whether the interaction-term should be cal-
culated or not

• verbosity (int) –

select the verbosity level of the module to get status-reports

– 0 : print nothing

– 1 : print some infos during runtime

– 2 : print more

– >=3 : print all

calc()

Perform actual calculation of bistatic scattering at top of the random volume (z=0) for the specified geom-
etry. For details please have a look at the documentation: (http://rt1.readthedocs.io/en/latest/theory.html#
first-order-solution-to-the-rte)

Returns

• Itot (array_like(float)) – Total scattered intensity (Itot = Isurf + Ivol + Iint)

• Isurf (array_like(float)) – Surface contribution

• Ivol (array_like(float)) – Volume contribution

• Iint (array_like(float)) – Interaction contribution

property fn
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interaction()

Numerical evaluation of the interaction-contribution (http://rt1.readthedocs.io/en/latest/theory.html#
interaction_contribution)

Returns
- – Numerical value of the interaction-contribution for the given set of parameters

Return type
array_like(float)

jacobian(dB=False, sig0=False, param_list=['omega', 'tau', 'NormBRDF'])
Returns the jacobian of the total backscatter with respect to the parameters provided in param_list. (default:
param_list = [‘omega’, ‘tau’, ‘NormBRDF’])

The jacobian can be evaluated for measurements in linear or dB units, and for either intensity- or sigma_0
values.

Note: The contribution of the interaction-term is currently not considered in the calculation of the jacobian!

Parameters

• dB (boolean (default = False)) – Indicator whether linear or dB units are used. The
applied relation is given by:

dI_dB(x)/dx = 10 / [log(10) * I_linear(x)] * dI_linear(x)/dx

• sig0 (boolean (default = False)) – Indicator wheather intensity- or sigma_0-values
are used The applied relation is given by:

sig_0 = 4 * pi * cos(inc) * I

where inc denotes the incident zenith-angle and I is the corresponding intensity

• param_list (list) – a list of strings that correspond to the parameters for which the
jacobian should be evaluated.

possible values are: ‘omega’, ‘tau’ ‘NormBRDF’ and any string corresponding to a
sympy.Symbol used in the definition of V or SRF

Returns
jac – The jacobian of the total backscatter with respect to omega, tau and NormBRDF

Return type
array-like(float)

property p_0

property p_ex

prv(v, msg)
function to set print output based on verbosity level v. possible values for v:

• 0 : print nothing

• 1 : print some infos during runtime

• 2 : print more

• >=3 : print all

Parameters

6.1. RT1-module 23
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• v (int) – the verbosity.

• msg (str) – the message to be printed.

surface()

Numerical evaluation of the surface-contribution (http://rt1.readthedocs.io/en/latest/theory.html#surface_
contribution)

Returns
- – Numerical value of the surface-contribution for the given set of parameters

Return type
array_like(float)

surface_curv(dB=False, sig0=False)
Numerical evaluation of the curvature (d^2I_s/dt_0^2) of the (!monostatic!) surface-contribution

Parameters

• dB (bool (default = False)) – indicator if the derivative is calculated for the dB val-
ues or for the linear values

• sig0 (bool (default = False)) – indicator if the derivative is calculated for the in-
tensity (False) or for sigma_0 = 4 * pi * cos(t_0) * intensity (True)

Returns
- – Numerical value of the monostatic curvature of the surface-contribution

Return type
array_like(float)

surface_slope(dB=False, sig0=False)
Numerical evaluation of the slope (dI_s/dt_0) of the (!monostatic!) surface-contribution

Parameters

• dB (bool (default = False)) – indicator if the derivative is calculated for the dB val-
ues or for the linear values

• sig0 (bool (default = False)) – indicator if the derivative is calculated for the in-
tensity (False) or for sigma_0 = 4 * pi * cos(t_0) * intensity (True)

Returns
- – Numerical value of the monostatic slope of the surface-contribution

Return type
array_like(float)

property t_0

property t_ex

tot_curv(sig0=False, dB=False)
numerical value of the (!monostatic!) curvature of total contribution (surface + volume)

Parameters

• dB (bool (default = False)) – indicator if the derivative is calculated for the dB val-
ues or for the linear values

• sig0 (bool (default = False)) – indicator if the derivative is calculated for the in-
tensity (False) or for sigma_0 = 4 * pi * cos(t_0) * intensity (True)
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Returns
- – Numerical value of the monostatic curvature of the total-contribution

Return type
array_like(float)

tot_slope(sig0=False, dB=False)
numerical value of the (!monostatic!) slope of total contribution (surface + volume)

Parameters

• dB (bool (default = False)) – indicator if the derivative is calculated for the dB val-
ues or for the linear values

• sig0 (bool (default = False)) – indicator if the derivative is calculated for the in-
tensity (False) or for sigma_0 = 4 * pi * cos(t_0) * intensity (True)

Returns
- – Numerical value of the monostatic slope of the total-contribution

Return type
array_like(float)

volume()

Numerical evaluation of the volume-contribution (http://rt1.readthedocs.io/en/latest/theory.html#volume_
contribution)

Returns
- – Numerical value of the volume-contribution for the given set of parameters

Return type
array_like(float)

volume_curv(dB=False, sig0=False)
Numerical evaluation of the curvature (d^2I_s/dt_0^2) of the (!monostatic!) volume-contribution

Parameters

• dB (bool (default = False)) – indicator if the derivative is calculated for the dB val-
ues or for the linear values

• sig0 (bool (default = False)) – indicator if the derivative is calculated for the in-
tensity (False) or for sigma_0 = 4 * pi * cos(t_0) * intensity (True)

Returns
- – Numerical value of the monostatic curvature of the volume-contribution

Return type
array_like(float)

volume_slope(dB=False, sig0=False)
Numerical evaluation of the slope (dI_v/dt_0) of the (!monostatic!) volume-contribution

Parameters

• dB (bool (default = False)) – indicator if the derivative is calculated for the dB val-
ues or for the linear values

• sig0 (bool (default = False)) – indicator if the derivative is calculated for the in-
tensity (False) or for sigma_0 = 4 * pi * cos(t_0) * intensity (True)

Returns
- – Numerical value of the monostatic slope of the volume-contribution

6.1. RT1-module 25
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Return type
array_like(float)

6.2 rtplots-module

6.3 rtfits-module

6.4 rtparse-module

6.5 Scatter-module

Define general object for scattering calculations

class rt1.scatter.Scatter

Bases: object

The basis object for any Surface and Volume objects

scat_angle(t_0, t_ex, p_0, p_ex, a)
Function to return the generalized scattering angle with respect to the given zenith-angles (http://rt1.
readthedocs.io/en/latest/theory.html#equation-general_scat_angle)

Standard-choices assigned in the volume- and surface class:

• Surface: a=[ 1,1,1] . . . pi-shifted scattering angle cos[t_0]*cos[t_ex] + sin[t_0]*sin[t_ex]*cos[p_0 -
p_ex]

• Volume: a=[-1,1,1] . . . ordinary scattering angle -cos[t_0]*cos[t_ex] + sin[t_0]*sin[t_ex]*cos[p_0 -
p_ex]

Note: The scattering angle is defined with respect to the incident zenith-angle t_0, and not with respect to
the incidence-angle in a spherical coordinate system (t_i)! The two definitions are related via t_i = pi - t_0

Parameters

• t_0 (array_like(float)) – incident zenith-angle

• p_0 (array_like(float)) – incident azimuth-angle

• t_ex (array_like(float)) – exit zenith-angle

• p_ex (array_like(float)) – exit azimuth-angle

• a ([ float , float , float ]) – generalized scattering angle parameters

Returns
the generalized scattering angle

Return type
float
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6.6 Surface-module

6.7 Volume-module

6.8 processing_config

6.6. Surface-module 27
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CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search
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